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Abstract 
 

In this paper, we propose a new solution to 
automatically detect potholes on the road surface from 
dash camera images using a state-of-the-art deep learning 
based object detection algorithm, namely, You Only Look 
Once version 5 (YOLOv5). The dash camera image data 
were preprocessed and augmented as inputs to 
Convolutional Neural Network (CNN) models, which are 
trained to output the detected potholes with location 
bounding boxes. Through transferred learning, different 
sizes of CNN models with different layer architectures are 
evaluated in terms of mean Average Precision (mAP) and 
the number of frames per second (fps). Compared with 
previous work, experimental results show that our 
proposed solution using YOLOv5 achieved higher 
detection accuracy at faster detection speeds, while 
enabling tradeoffs between accuracy and speed with three 
different model size options.  

Index Terms — YOLO, Object Detection, Localization, 
Potholes, Deep Learning, Convolutional Neural Network 
(CNN), Autonomous Vehicles 

1. Introduction 
Potholes are common road damages of varying sizes and 

shapes. They are usually formed by the expansion and 
contraction of ground water once the water has entered the 
ground under the pavement, and expedited by certain 
weather and traffic conditions.  For example, potholes may 
sprout after rain in spring when the temperature fluctuates 
frequently.  Potholes can be dangerous, resulting in road 
accidents and vehicle damage. In the United States, it is 
estimated that potholes account for about 3 billion dollars 
in car damages [12] each year. Severe accidents or damage 
can happen when drivers attempt or fail to avoid potholes, 
especially for stressed and fatigued drivers. In response, car 
manufacturers are continuously working on improving 
automated driving assistance where safety is the utmost 
priority. This requires detection of road conditions, so the 
vehicle can make autonomous decisions for safety 

measures, and automatic pothole detection plays an 
important role. 

Moreover, potholes without timely treatment would 
accelerate further damage to the road, resulting in a higher 
cost of road maintenance.  Timely detection and treatment 
of potholes have always been a priority of road service 
agencies.    

Traditional road maintenance relies on either scheduled 
road surveillance or reporting calls from drivers to detect 
potholes. Scheduled road surveillance cannot respond to 
newly-formed potholes promptly. The operation consists 
of field data collection, identification, and classification. 
Currently, experienced and well-trained personnel are 
required to perform these tasks, resulting in high costs in 
time and labor. The delay could be in months or even years 
depending on the frequency of the schedule. On the other 
hand, responding to calls from drivers can be faster, but 
these calls are usually triggered after damage to callers’ 
vehicles. Therefore, small potholes or those deviating from 
the center of driving lanes are not reported in time unless 
vehicle damage takes place. In addition, the manual nature 
of the reporting process results in inaccurate information, 
adding to the delay and cost. 

Accurate pothole detection from autonomous vehicles 
will enable early detection and reporting through 
crowdsourcing and Internet-of-Things platforms, which 
could lead to a revolutionary change in road maintenance.  

The pothole detection problem has been addressed with 
different approaches including 3D scene reconstruction, 
vibration-based models, and 2D image-based models [4]. 
Low-cost cameras and advanced image processing have 
inspired the development of 2D image-based models using 
deep learning. These models employ learning-based object 
detection algorithms, including You Only Look Once 
(YOLO) [13], Single Shot Detection (SSD) [4], and 
Region-based Convolutional Neural Networks (R-CNNs) 
[4].  

Results of existing models for pothole detection in [4, 5, 
6, 7, 8] indicate that YOLO solves the problem effectively 
in terms of detection speed and accuracy. The main 
challenges for reliable pothole detection in 2-D images are 
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the various shapes and sizes of potholes. Moreover, false 
positives increase when there are objects similar to 
potholes such as patches, shadows, and water. As a result, 
the improvement of accuracy usually comes at the cost of 
computational complexity and detection time. This paper 
investigates a newer version of YOLOv5, proposed in [1], 
which achieves better precision and considerably better 
speed than previous solutions for pothole detection. 

This paper is organized as follows. The related work is 
presented in Section II. Section III describes the 
components of our work including datasets, data 
preprocessing, CNN model architecture, and evaluation 
metrics. Section IV presents our experimental results in 
comparison to related work. The paper is concluded in 
Section V. 

2. Related work 
In [4], one of the solutions that addresses the problem of 

pothole detection uses transfer learning with Mask R-
CNN, one of the region-based convolutional neural 
networks[14], and the backbone CNN models of 
ResNet101 [15] and FPN [16]. Mask R-CNN is composed 
of a two-step framework. The first step scans the whole 
image to generate proposals. The second step classifies the 
proposals and generates bounding boxes and masks of an 
object. For transfer learning, the weights were adapted 
from the trained model of the COCO dataset [17] and 
performed the training for fine-tuning with new data. The 
drawback of this solution is that R-CNN based models 
have longer prediction times. Experiments were carried out 
on a combination of multiple datasets like CCSAD, DLR, 
Japan, Sunny, and PNW. this method gave 89% precision 
and 93% recall. 

Another approach in [4] uses transfer learning with 
YOLOv2 [9]. It is based on a regression algorithm that 
predicts classes and bounding boxes for the whole image. 
In YOLO, a single CNN is used for both classification and 
localization of an object. The YOLOv2 architecture is 
based on 22 convolutional layers and 5 Maxpool layers. 
The input image is divided into a grid cell to find the object 
of interest, whose center falls into a particular cell. It first 
generates bounding boxes with confidence scores, then 
followed by Non-Max Suppression (NMS), which is a 
process of removing bounding boxes with low object 
probability and large shared area. Using the same databases 
mentioned in the previous experiment, this method gave an 
average of 0.69 Intersection over Union (IoU). 

A solution for the detection of potholes using YOLOv3 
[10] was proposed in [5]. It estimates how much a 
bounding box resembles the object of interest based on 
logistic regression. Logistic classifiers are used since the 
softmax layer did not prove to be of much use for boosting 
performance. The performance of YOLOv3 [10] in 
detecting small objects has improved by several folds, but 

the performance is not as strong and promising as the 
results from YOLOv2 [9] when it comes to large and 
medium-sized objects. In YOLOv3 [10], 53 convolution 
layers are used. Three different scales are used for 
predicting bounding boxes. For every bounding box, an 
objectness score is calculated. The class label of objects in 
the bounding boxes is calculated using multilabel 
classification. The final layer produces a 3D tensor with the 
bounding boxes, objectness, and the class prediction 
encoded in it. The dataset consisted of images taken 
manually from a car camera using a phone and consisted of 
around 1500 images. A 0.49 mAP was achieved at a 
threshold of 0.5 IoU. 

Another solution to the pothole-detection problem using 
YOLOv4 [11] was proposed in [6]. It aims at building a 
faster object detector for production systems with 
optimized parallel computations. YOLOv4 [11] boosts the 
performance over YOLOv3 [10] by using strategies such 
as Bag of Freebies and Bag of Specials. Bag of Specials 
causes a marginal overhead on the time required in the 
detection phase whereas Bag of Freebies improves the 
performance without additional time overhead. One such 
strategy in the Bag of Freebies employed in YOLOv4 [11] 
is the Complete-IoU (CIoU) loss [18], which is a loss 
function that considers the overlapping area, the distance 
between center points, and the aspect ratio, thereby 
achieving better convergence speed and accuracy. A 
strategy called Distance IoU Non-Max Suppression (DIoU 
NMS) [19] is used in Bag of Specials. DIoU considers IoU 
and an object’s distance from the center, while NMS filters 
out the bounding boxes that improperly predict the same 
object and retains the one with the highest score. The CIoU 
and DIoU loss used in YOLOv4 [11] help attain significant 
performance improvement in terms of IoU. This approach 
gave 0.93 mAP on the dataset created manually, which is a 
better result when compared to previous versions of YOLO 
[9, 10]. 

The solution proposed in [8] also used YOLOv3 [10]. In 
this study, three architectures of YOLOv3 [10], i.e., 
YOLOv3, YOLOv3-tiny, and YOLOv3-spp were used. 
The YOLOv3 model [10] has a feature extractor of 53 
layers. YOLOv3-tiny is a smaller version of YOLOv3 
whileYOLOv3-spp is YOLOv3 [11] combined with 
Spatial Pyramid Pooling (SPP). With a dataset built from a 
CCTV camera mounted on the back of a car, this proposed 
solution gave 0.95 mAP. 

The solution proposed in [7] also uses YOLOv3 [10] to 
solve the pothole-detection problem. The training of this 
model is done with full images and the probability of the 
class in the bounding boxes. This method has more benefits 
than the original methods for object detection. The 
YOLOv3 model [10] is fast. 45 fps can be run, and on a 
faster version, 150 fps can be achieved. This implies that 
real-time video can also be processed with latency as small 
as 8ms. Using 1500 images, a 82% accuracy was achieved 
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in this experiment. 
The solution proposed in this paper makes 

improvements over the above-mentioned approaches by 
using a newer YOLO version, YOLOv5 [1]. It is more 
efficient in terms of prediction, training time, and fps. Our 
YOLOv5 model is trained with the dataset from [2, 3]. This 
dataset is augmented using image preprocessing methods 
including horizontal flip and brightness/contrast 
adjustment. 

3. Proposed solution  
Our proposed solution aims to detect potholes in real- 

time from the images of a dash camera with high detection 
accuracy and fast detection speed that satisfy safety 
requirements for making autonomous decisions. In the 
following subsections, we will describe the image dataset 
format and data augmentation methods used, the 
architecture of CNN models trained, and performance 
metrics evaluated in our proposed solutions. 

3.1. Dataset 
We used the dataset compiled at the Electrical and 

Electronic Department, Stelllenbosch University, 2015, 
provided in [2] and [3]. This is the same dataset used for 
the solution proposed in [7]. It consists of images taken 
from a video of a car dash camera. The image resolution is 
3680 x 2760 pixels. An example of the image from this 
dataset is shown in Fig. 1. 

 

Each image in this dataset is labeled with 5 elements per 
detection object: class, box center (x, y), width, and height. 
For example, one entry would be 0, 0.59, 0.79, 0.26, and 
0.39. Here, 0 is the class label for potholes. The class label 
is followed by the center coordinates (x, y) of the bounding 
box: 0.59 and 0.79, as fractions of the width and height of 
the image. Finally, the width and height of the bounding 
box are 0.26 and 0.39 respectively, also as fractions of the 
width and height of the image. 

3.2. Data preprocessing 
The preprocessing of images from the dataset consisted 

of cropping and resizing. 
The images were cropped for two reasons. The first 

reason is that potholes are not present in the bottom or top 
areas. These areas cover the sky and the vehicle’s 
dashboard. The second reason is that cropping images 
increases the size of potholes relative to the image size. 
Cropping at the bottom was performed as follows. Among 
all images, the pothole that was closest to the bottom was 
identified. All images’ bottom was cropped so that this 
pothole was 100 pixels from the new bottom. A similar 
process was performed to crop the top of the images. As a 
result, the new vertical size of the images was reduced to 
37% of the original height. The left and right areas of all 
images were then cropped reducing the horizontal size of 
images to 37% of its original value to maintain a constant 
aspect ratio. It needs to be noted that cropping the images 
horizontally did remove some potholes labeled close to the 
left and right boarders, but the number of these potholes is 
smaller in comparison to the total number of potholes in 
the dataset. Images were then resized to 640 x 640 for 
training to fulfill the input requirements of the models. The 
labels of potholes were also adjusted accordingly. 

For each training batch, we pass training data through a 
data loader with data augmentation. The data loader makes 
a variety of augmentations, such as scaling, color space 
adjustments, horizontal flipping, and mosaic image 
generation, which combines four images into four tiles of 
a new image with random ratios. 

There were 7779 images in the augmented dataset, and 
the dataset was randomly split into training, validation, and 
testing sets with a 70:20:10 ratio. 

3.3. Model architectures 
The YOLOv5 model architecture is shown in Fig. 2.[1]. 

It consists of three main parts: model backbone, model 
neck, and model head. 

1) Model backbone: The model backbone is mainly used 
to extract important features from the given input image. In 
YOLOv5, the Cross Stage Partial Networks (CSP) [22] are 
used as the backbone to extract informative features from 
an input image. The CSP addresses duplicate gradient 
problems in other larger Convolutional Network 
backbones resulting in fewer parameters and fewer FLOPS 
for comparable importance. This is important to the YOLO 
family, where inference speed and small model size are 
important. 

Fig. 1: Example of training data from source [2, 3] 
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The CSP models are based on DenseNet [23] with 
connected layers in convolutional neural networks. 
Because it is hard to back-propagate loss signals through a 
very deep network, the DenseNet was designed to alleviate 
the vanishing gradient problem, to bolster feature 
propagation, to encourage the network to reuse features, 
and to reduce the number of network parameters. 

DenseNet was also edited in CSPResNext50 and 
CSPDarknet53 to separate the feature map of the base layer 
by copying it and sending one copy through the dense 
block and sending another straight on to the next stage. The 
idea with CSPResNext50 and CSPDarknet53 is to remove 
computational bottlenecks in the DenseNet [23] and 
improve learning by passing on an unedited version of the 
feature map. 

2) Model neck: It is mainly used to generate feature 
pyramids. Feature pyramids help models generalize well 
on object scaling. It helps to identify the same object with 
different sizes and scales such that the model would 
perform well on unseen data. There are different types of 
feature pyramid techniques such as FPN [24], BiFPN [25], 
PANet [26]. In YOLOv5, PANet [26] is used to get feature 
pyramids. 

3) Model head: It is mainly used to perform the final 
detection. It applies anchor boxes on features and generates 
final output vectors with class probabilities, objectness 
scores, and bounding boxes. In YOLOv5, the model head 
is the same as in the previous versions, YOLOv3 and 
YOLOv4. 

3.4. Evaluation Metrics 
We evaluate the performance of our proposed solution 

in terms of detection accuracy and detection speed. The 
detection accuracy is measured by mean Average Precision 
(mAP), while the detection speed is measured by the 
number of image frames per second (fps) processed during 

testing.   
Object detection accuracy can be evaluated using binary 

detection performance metrics, such as precision and 
recall, under a certain threshold of IoU, which is a metric 
of localization accuracy. The mean Average Precision 
(mAP) is a single average precision number that combines 
precisions and recalls under different IoU thresholds. 
Generally, the higher the mAP value, the more accurate the 
detection is. In our experiment, mAP is bounded by the 
range of [0,1].   

A real-time detection should achieve at least 60 fps when 
the trained model is deployed. With higher fps, i.e., faster 
detection, safer autonomous control can be implemented.  

4. Experimental results 
The experiments were carried out on an Nvidia RTX 

3070 graphical processing unit to boost training speed 
performance using the CUDA library. The experiments 
included training the model on small, medium, and large 
architectures of YOLOv5 [1]. Each training was done for 
500 epochs using pre-trained weights of YOLOv5 [1], 
which were trained on the COCO dataset [17]. The mAP 
was determined for each epoch, and the average mAP was 
recorded for different IoU threshold values: from 0.5 to 
0.95 with increments of 0.05. 

The initial learning rate was set to 0.005. Validation 
result after each epoch during training was noted for all 3 
models (i.e., small, medium, and large architectures of 
YOLOv5).  

 

As shown in Fig. 3, the mAP at the 0.5 IoU threshold 
flattened after 250 to 300 epochs. On the other hand, the 
average mAP across the 0.5 to 0.95 IoU threshold values 
flattened after 475 to 500 epochs as shown in Fig. 4. 
Therefore, 500 epochs were considered a good stopping 
point. The training time was 4-6 hours for the small 
architecture, 10-12 hours for the medium architecture, and 
22-24 hours for the large architecture 

Fig. 2: YOLOv5 CNN model architecture [1] 

Fig. 3: Training validation results of mAP at 0.5 IoU 
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The final validation results at the end of the training are 

shown in Table I. It can be seen that the average mAP 
across the 0.5 to 0.95 IoU threshold values is less than the 
mAP at the 0.5 IoU threshold value for all three models. 
The small architecture has comparatively less mAP than 
the medium and large architectures, while the medium 
architecture has an mAP value similar to that of the larger 
architecture. Observing the trend of a large increase in 
training time and a small increase in mAP with a larger 
model size, we did not use the extra-large model that was 
also proposed in [1].  

TABLE I.  TRAINING VALIDATION RESULTS 

Model Size mAP @ 0.5 mAP @ 0.5:0.95 Precision Recall 

Small 0.9636 0.7648 0.9633 0.9387 

Medium 0.9716 0.8332 0.982 0.9445 

Large 0.9753 0.8471 0.9746 0.956 

 
Our test results are shown and compared with those of 

some previous works in Table II. From this table, we can 
see that the small, medium and large YOLOv5 
architectures delivered mAP values of 0.934, 0.933, and 
0.937 respectively for an IoU threshold value of 0.5. The 
related works that used YOLOv3 and YOLOv4 delivered 
mAP values of 0.869 and 0.933. Although the 
improvements in mAP from YOLOv4 do not seem to be 
substantial, there is a significant improvement in the 
detection speed when comparing YOLOv5 to previous 
versions. YOLOv4 delivers around 60-100 fps [11] while 
YOLOv5 delivers 200 to 400 fps depending upon the size 
of the model used [1].  
 
 

 

TABLE II.  TEST RESULTS 

Model 
Test set 

size 
mAP 
@ 0.5 

mAP @ 
0.5:0.9 Prec Rec 

Speed 
(FPS)  

Small 778 0.934 0.726 0.942 0.909 400-500 

Medium 778 0.933 0.778 0.951 0.912 300-400 

Large 778 0.937 0.791 0.967 0.909 200-300 

R-CNN [4] 6 - - 0.898 0.928 - 

YOLOv3 [5] 300 0.4971 - 0.76 0.4 - 

YOLOv4 [6] 130-260 0.933 - - - 60-100 

YOLOv3 [8] 224 0.8693 - 0.92 0.82 - 

 
Note that we used significantly more test images (778) 

than the related works, which could have played an 
important role in achieving higher mAP values. Fig. 5 
shows examples of test images where a pothole was 
successfully detected. 

There were instances in which potholes were missed or 
detected at incorrect locations as shown in Fig. 6. The 
image on the left shows improper detection of potholes on 
a sidewalk, and the figure on right shows an undetected 
pothole. However, these instances are rare given the high 
mAP achieved. 

Fig. 6: Examples of improper detection in test images 

Fig. 5: Examples of correct detection of pothole in test images 

Fig. 4: Training validation results of mAP at 0.5 IoU to 
0.95 IoU with increment of 0.05. 
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5. Conclusion 
Our solution to pothole detection based on YOLOv5 

achieved a satisfactory detection accuracy with mAP 
values higher than 93% at a detection rate of 2ms per image 
on average. Experimental results of our proposed solution 
have shown improvements in both detection accuracy and 
detection speed compared to previous works. The 
improvements mainly come from both YOLOv5 model 
architecture improvements and extensive data 
augmentations. 

There can be improvements in scenarios of improper 
detection in which potholes are detected on sidewalks or 
undetected. With improved detection accuracy and speed,   
pothole detection can be deployed for safer autonomous 
driving, as well as efficient road maintenance. 
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