

1

Pothole Detection from Dash Camera Images using YOLOv5

Ashit Patel
Dept. of Computer Science

Loyola Marymount University
Los Angeles, USA

apatel33@lion.lmu.edu

Lei Huang
Dept. of Electrical and Computer

Engineering
Loyola Marymount University

Los Angeles, USA
lei.huang@lmu.edu

Gustavo Vejerano
Dept. of Electrical and Computer

Engineering
Loyola Marymount University

Los Angeles, USA
gustavo.vejarano@lmu.edu

Abstract

In this paper, we propose a new solution to
automatically detect potholes on the road surface from
dash camera images using a state-of-the-art deep learning
based object detection algorithm, namely, You Only Look
Once version 5 (YOLOv5). The dash camera image data
were preprocessed and augmented as inputs to
Convolutional Neural Network (CNN) models, which are
trained to output the detected potholes with location
bounding boxes. Through transferred learning, different
sizes of CNN models with different layer architectures are
evaluated in terms of mean Average Precision (mAP) and
the number of frames per second (fps). Compared with
previous work, experimental results show that our
proposed solution using YOLOv5 achieved higher
detection accuracy at faster detection speeds, while
enabling tradeoffs between accuracy and speed with three
different model size options.

Index Terms — YOLO, Object Detection, Localization,
Potholes, Deep Learning, Convolutional Neural Network
(CNN), Autonomous Vehicles

1. Introduction
Potholes are common road damages of varying sizes and

shapes. They are usually formed by the expansion and
contraction of ground water once the water has entered the
ground under the pavement, and expedited by certain
weather and traffic conditions. For example, potholes may
sprout after rain in spring when the temperature fluctuates
frequently. Potholes can be dangerous, resulting in road
accidents and vehicle damage. In the United States, it is
estimated that potholes account for about 3 billion dollars
in car damages [12] each year. Severe accidents or damage
can happen when drivers attempt or fail to avoid potholes,
especially for stressed and fatigued drivers. In response, car
manufacturers are continuously working on improving
automated driving assistance where safety is the utmost
priority. This requires detection of road conditions, so the
vehicle can make autonomous decisions for safety

measures, and automatic pothole detection plays an
important role.

Moreover, potholes without timely treatment would
accelerate further damage to the road, resulting in a higher
cost of road maintenance. Timely detection and treatment
of potholes have always been a priority of road service
agencies.

Traditional road maintenance relies on either scheduled
road surveillance or reporting calls from drivers to detect
potholes. Scheduled road surveillance cannot respond to
newly-formed potholes promptly. The operation consists
of field data collection, identification, and classification.
Currently, experienced and well-trained personnel are
required to perform these tasks, resulting in high costs in
time and labor. The delay could be in months or even years
depending on the frequency of the schedule. On the other
hand, responding to calls from drivers can be faster, but
these calls are usually triggered after damage to callers’
vehicles. Therefore, small potholes or those deviating from
the center of driving lanes are not reported in time unless
vehicle damage takes place. In addition, the manual nature
of the reporting process results in inaccurate information,
adding to the delay and cost.

Accurate pothole detection from autonomous vehicles
will enable early detection and reporting through
crowdsourcing and Internet-of-Things platforms, which
could lead to a revolutionary change in road maintenance.

The pothole detection problem has been addressed with
different approaches including 3D scene reconstruction,
vibration-based models, and 2D image-based models [4].
Low-cost cameras and advanced image processing have
inspired the development of 2D image-based models using
deep learning. These models employ learning-based object
detection algorithms, including You Only Look Once
(YOLO) [13], Single Shot Detection (SSD) [4], and
Region-based Convolutional Neural Networks (R-CNNs)
[4].

Results of existing models for pothole detection in [4, 5,
6, 7, 8] indicate that YOLO solves the problem effectively
in terms of detection speed and accuracy. The main
challenges for reliable pothole detection in 2-D images are

2

the various shapes and sizes of potholes. Moreover, false
positives increase when there are objects similar to
potholes such as patches, shadows, and water. As a result,
the improvement of accuracy usually comes at the cost of
computational complexity and detection time. This paper
investigates a newer version of YOLOv5, proposed in [1],
which achieves better precision and considerably better
speed than previous solutions for pothole detection.

This paper is organized as follows. The related work is
presented in Section II. Section III describes the
components of our work including datasets, data
preprocessing, CNN model architecture, and evaluation
metrics. Section IV presents our experimental results in
comparison to related work. The paper is concluded in
Section V.

2. Related work
In [4], one of the solutions that addresses the problem of

pothole detection uses transfer learning with Mask R-
CNN, one of the region-based convolutional neural
networks[14], and the backbone CNN models of
ResNet101 [15] and FPN [16]. Mask R-CNN is composed
of a two-step framework. The first step scans the whole
image to generate proposals. The second step classifies the
proposals and generates bounding boxes and masks of an
object. For transfer learning, the weights were adapted
from the trained model of the COCO dataset [17] and
performed the training for fine-tuning with new data. The
drawback of this solution is that R-CNN based models
have longer prediction times. Experiments were carried out
on a combination of multiple datasets like CCSAD, DLR,
Japan, Sunny, and PNW. this method gave 89% precision
and 93% recall.

Another approach in [4] uses transfer learning with
YOLOv2 [9]. It is based on a regression algorithm that
predicts classes and bounding boxes for the whole image.
In YOLO, a single CNN is used for both classification and
localization of an object. The YOLOv2 architecture is
based on 22 convolutional layers and 5 Maxpool layers.
The input image is divided into a grid cell to find the object
of interest, whose center falls into a particular cell. It first
generates bounding boxes with confidence scores, then
followed by Non-Max Suppression (NMS), which is a
process of removing bounding boxes with low object
probability and large shared area. Using the same databases
mentioned in the previous experiment, this method gave an
average of 0.69 Intersection over Union (IoU).

A solution for the detection of potholes using YOLOv3
[10] was proposed in [5]. It estimates how much a
bounding box resembles the object of interest based on
logistic regression. Logistic classifiers are used since the
softmax layer did not prove to be of much use for boosting
performance. The performance of YOLOv3 [10] in
detecting small objects has improved by several folds, but

the performance is not as strong and promising as the
results from YOLOv2 [9] when it comes to large and
medium-sized objects. In YOLOv3 [10], 53 convolution
layers are used. Three different scales are used for
predicting bounding boxes. For every bounding box, an
objectness score is calculated. The class label of objects in
the bounding boxes is calculated using multilabel
classification. The final layer produces a 3D tensor with the
bounding boxes, objectness, and the class prediction
encoded in it. The dataset consisted of images taken
manually from a car camera using a phone and consisted of
around 1500 images. A 0.49 mAP was achieved at a
threshold of 0.5 IoU.

Another solution to the pothole-detection problem using
YOLOv4 [11] was proposed in [6]. It aims at building a
faster object detector for production systems with
optimized parallel computations. YOLOv4 [11] boosts the
performance over YOLOv3 [10] by using strategies such
as Bag of Freebies and Bag of Specials. Bag of Specials
causes a marginal overhead on the time required in the
detection phase whereas Bag of Freebies improves the
performance without additional time overhead. One such
strategy in the Bag of Freebies employed in YOLOv4 [11]
is the Complete-IoU (CIoU) loss [18], which is a loss
function that considers the overlapping area, the distance
between center points, and the aspect ratio, thereby
achieving better convergence speed and accuracy. A
strategy called Distance IoU Non-Max Suppression (DIoU
NMS) [19] is used in Bag of Specials. DIoU considers IoU
and an object’s distance from the center, while NMS filters
out the bounding boxes that improperly predict the same
object and retains the one with the highest score. The CIoU
and DIoU loss used in YOLOv4 [11] help attain significant
performance improvement in terms of IoU. This approach
gave 0.93 mAP on the dataset created manually, which is a
better result when compared to previous versions of YOLO
[9, 10].

The solution proposed in [8] also used YOLOv3 [10]. In
this study, three architectures of YOLOv3 [10], i.e.,
YOLOv3, YOLOv3-tiny, and YOLOv3-spp were used.
The YOLOv3 model [10] has a feature extractor of 53
layers. YOLOv3-tiny is a smaller version of YOLOv3
whileYOLOv3-spp is YOLOv3 [11] combined with
Spatial Pyramid Pooling (SPP). With a dataset built from a
CCTV camera mounted on the back of a car, this proposed
solution gave 0.95 mAP.

The solution proposed in [7] also uses YOLOv3 [10] to
solve the pothole-detection problem. The training of this
model is done with full images and the probability of the
class in the bounding boxes. This method has more benefits
than the original methods for object detection. The
YOLOv3 model [10] is fast. 45 fps can be run, and on a
faster version, 150 fps can be achieved. This implies that
real-time video can also be processed with latency as small
as 8ms. Using 1500 images, a 82% accuracy was achieved

3

in this experiment.
The solution proposed in this paper makes

improvements over the above-mentioned approaches by
using a newer YOLO version, YOLOv5 [1]. It is more
efficient in terms of prediction, training time, and fps. Our
YOLOv5 model is trained with the dataset from [2, 3]. This
dataset is augmented using image preprocessing methods
including horizontal flip and brightness/contrast
adjustment.

3. Proposed solution
Our proposed solution aims to detect potholes in real-

time from the images of a dash camera with high detection
accuracy and fast detection speed that satisfy safety
requirements for making autonomous decisions. In the
following subsections, we will describe the image dataset
format and data augmentation methods used, the
architecture of CNN models trained, and performance
metrics evaluated in our proposed solutions.

3.1. Dataset
We used the dataset compiled at the Electrical and

Electronic Department, Stelllenbosch University, 2015,
provided in [2] and [3]. This is the same dataset used for
the solution proposed in [7]. It consists of images taken
from a video of a car dash camera. The image resolution is
3680 x 2760 pixels. An example of the image from this
dataset is shown in Fig. 1.

Each image in this dataset is labeled with 5 elements per
detection object: class, box center (x, y), width, and height.
For example, one entry would be 0, 0.59, 0.79, 0.26, and
0.39. Here, 0 is the class label for potholes. The class label
is followed by the center coordinates (x, y) of the bounding
box: 0.59 and 0.79, as fractions of the width and height of
the image. Finally, the width and height of the bounding
box are 0.26 and 0.39 respectively, also as fractions of the
width and height of the image.

3.2. Data preprocessing
The preprocessing of images from the dataset consisted

of cropping and resizing.
The images were cropped for two reasons. The first

reason is that potholes are not present in the bottom or top
areas. These areas cover the sky and the vehicle’s
dashboard. The second reason is that cropping images
increases the size of potholes relative to the image size.
Cropping at the bottom was performed as follows. Among
all images, the pothole that was closest to the bottom was
identified. All images’ bottom was cropped so that this
pothole was 100 pixels from the new bottom. A similar
process was performed to crop the top of the images. As a
result, the new vertical size of the images was reduced to
37% of the original height. The left and right areas of all
images were then cropped reducing the horizontal size of
images to 37% of its original value to maintain a constant
aspect ratio. It needs to be noted that cropping the images
horizontally did remove some potholes labeled close to the
left and right boarders, but the number of these potholes is
smaller in comparison to the total number of potholes in
the dataset. Images were then resized to 640 x 640 for
training to fulfill the input requirements of the models. The
labels of potholes were also adjusted accordingly.

For each training batch, we pass training data through a
data loader with data augmentation. The data loader makes
a variety of augmentations, such as scaling, color space
adjustments, horizontal flipping, and mosaic image
generation, which combines four images into four tiles of
a new image with random ratios.

There were 7779 images in the augmented dataset, and
the dataset was randomly split into training, validation, and
testing sets with a 70:20:10 ratio.

3.3. Model architectures
The YOLOv5 model architecture is shown in Fig. 2.[1].

It consists of three main parts: model backbone, model
neck, and model head.

1) Model backbone: The model backbone is mainly used
to extract important features from the given input image. In
YOLOv5, the Cross Stage Partial Networks (CSP) [22] are
used as the backbone to extract informative features from
an input image. The CSP addresses duplicate gradient
problems in other larger Convolutional Network
backbones resulting in fewer parameters and fewer FLOPS
for comparable importance. This is important to the YOLO
family, where inference speed and small model size are
important.

Fig. 1: Example of training data from source [2, 3]

4

The CSP models are based on DenseNet [23] with
connected layers in convolutional neural networks.
Because it is hard to back-propagate loss signals through a
very deep network, the DenseNet was designed to alleviate
the vanishing gradient problem, to bolster feature
propagation, to encourage the network to reuse features,
and to reduce the number of network parameters.

DenseNet was also edited in CSPResNext50 and
CSPDarknet53 to separate the feature map of the base layer
by copying it and sending one copy through the dense
block and sending another straight on to the next stage. The
idea with CSPResNext50 and CSPDarknet53 is to remove
computational bottlenecks in the DenseNet [23] and
improve learning by passing on an unedited version of the
feature map.

2) Model neck: It is mainly used to generate feature
pyramids. Feature pyramids help models generalize well
on object scaling. It helps to identify the same object with
different sizes and scales such that the model would
perform well on unseen data. There are different types of
feature pyramid techniques such as FPN [24], BiFPN [25],
PANet [26]. In YOLOv5, PANet [26] is used to get feature
pyramids.

3) Model head: It is mainly used to perform the final
detection. It applies anchor boxes on features and generates
final output vectors with class probabilities, objectness
scores, and bounding boxes. In YOLOv5, the model head
is the same as in the previous versions, YOLOv3 and
YOLOv4.

3.4. Evaluation Metrics
We evaluate the performance of our proposed solution

in terms of detection accuracy and detection speed. The
detection accuracy is measured by mean Average Precision
(mAP), while the detection speed is measured by the
number of image frames per second (fps) processed during

testing.
Object detection accuracy can be evaluated using binary

detection performance metrics, such as precision and
recall, under a certain threshold of IoU, which is a metric
of localization accuracy. The mean Average Precision
(mAP) is a single average precision number that combines
precisions and recalls under different IoU thresholds.
Generally, the higher the mAP value, the more accurate the
detection is. In our experiment, mAP is bounded by the
range of [0,1].

A real-time detection should achieve at least 60 fps when
the trained model is deployed. With higher fps, i.e., faster
detection, safer autonomous control can be implemented.

4. Experimental results
The experiments were carried out on an Nvidia RTX

3070 graphical processing unit to boost training speed
performance using the CUDA library. The experiments
included training the model on small, medium, and large
architectures of YOLOv5 [1]. Each training was done for
500 epochs using pre-trained weights of YOLOv5 [1],
which were trained on the COCO dataset [17]. The mAP
was determined for each epoch, and the average mAP was
recorded for different IoU threshold values: from 0.5 to
0.95 with increments of 0.05.

The initial learning rate was set to 0.005. Validation
result after each epoch during training was noted for all 3
models (i.e., small, medium, and large architectures of
YOLOv5).

As shown in Fig. 3, the mAP at the 0.5 IoU threshold
flattened after 250 to 300 epochs. On the other hand, the
average mAP across the 0.5 to 0.95 IoU threshold values
flattened after 475 to 500 epochs as shown in Fig. 4.
Therefore, 500 epochs were considered a good stopping
point. The training time was 4-6 hours for the small
architecture, 10-12 hours for the medium architecture, and
22-24 hours for the large architecture

Fig. 2: YOLOv5 CNN model architecture [1]

Fig. 3: Training validation results of mAP at 0.5 IoU

5

.

The final validation results at the end of the training are

shown in Table I. It can be seen that the average mAP
across the 0.5 to 0.95 IoU threshold values is less than the
mAP at the 0.5 IoU threshold value for all three models.
The small architecture has comparatively less mAP than
the medium and large architectures, while the medium
architecture has an mAP value similar to that of the larger
architecture. Observing the trend of a large increase in
training time and a small increase in mAP with a larger
model size, we did not use the extra-large model that was
also proposed in [1].

TABLE I. TRAINING VALIDATION RESULTS

Model Size mAP @ 0.5 mAP @ 0.5:0.95 Precision Recall

Small 0.9636 0.7648 0.9633 0.9387

Medium 0.9716 0.8332 0.982 0.9445

Large 0.9753 0.8471 0.9746 0.956

Our test results are shown and compared with those of

some previous works in Table II. From this table, we can
see that the small, medium and large YOLOv5
architectures delivered mAP values of 0.934, 0.933, and
0.937 respectively for an IoU threshold value of 0.5. The
related works that used YOLOv3 and YOLOv4 delivered
mAP values of 0.869 and 0.933. Although the
improvements in mAP from YOLOv4 do not seem to be
substantial, there is a significant improvement in the
detection speed when comparing YOLOv5 to previous
versions. YOLOv4 delivers around 60-100 fps [11] while
YOLOv5 delivers 200 to 400 fps depending upon the size
of the model used [1].

TABLE II. TEST RESULTS

Model
Test set

size
mAP
@ 0.5

mAP @
0.5:0.9 Prec Rec

Speed
(FPS)

Small 778 0.934 0.726 0.942 0.909 400-500

Medium 778 0.933 0.778 0.951 0.912 300-400

Large 778 0.937 0.791 0.967 0.909 200-300

R-CNN [4] 6 - - 0.898 0.928 -

YOLOv3 [5] 300 0.4971 - 0.76 0.4 -

YOLOv4 [6] 130-260 0.933 - - - 60-100

YOLOv3 [8] 224 0.8693 - 0.92 0.82 -

Note that we used significantly more test images (778)

than the related works, which could have played an
important role in achieving higher mAP values. Fig. 5
shows examples of test images where a pothole was
successfully detected.

There were instances in which potholes were missed or
detected at incorrect locations as shown in Fig. 6. The
image on the left shows improper detection of potholes on
a sidewalk, and the figure on right shows an undetected
pothole. However, these instances are rare given the high
mAP achieved.

Fig. 6: Examples of improper detection in test images

Fig. 5: Examples of correct detection of pothole in test images

Fig. 4: Training validation results of mAP at 0.5 IoU to
0.95 IoU with increment of 0.05.

6

5. Conclusion
Our solution to pothole detection based on YOLOv5

achieved a satisfactory detection accuracy with mAP
values higher than 93% at a detection rate of 2ms per image
on average. Experimental results of our proposed solution
have shown improvements in both detection accuracy and
detection speed compared to previous works. The
improvements mainly come from both YOLOv5 model
architecture improvements and extensive data
augmentations.

There can be improvements in scenarios of improper
detection in which potholes are detected on sidewalks or
undetected. With improved detection accuracy and speed,
pothole detection can be deployed for safer autonomous
driving, as well as efficient road maintenance.

References
[1] Glenn Jocher et al. “ultralytics/yolov5: Initial Release”,

Zenodo, 2020, http://doi.org/10.5281/zenodo.3908560
[2] S. Nienaber, M.J. Booysen, R.S. Kroon, “Detecting potholes

using simple image processing techniques and real-world
footage”, SATC, July 2015, Pretoria, South Africa.

[3] S. Nienaber, R.S. Kroon, M.J. Booysen , “A Comparison of
Low-Cost Monocular Vision Techniques for Pothole
Distance Estimation”, IEEE CIVTS, December 2015, Cape
Town, South Africa.

[4] A. Dhiman and R. Klette, "Pothole Detection Using
Computer Vision and Learning," in IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 8, pp. 3536-
3550, Aug. 2020, doi: 10.1109/TITS.2019.2931297.

[5] D. J, S. D. V, A. S A, K. R and L. Parameswaran, "Deep
Learning based Detection of potholes in Indian roads using
YOLO," 2020 International Conference on Inventive
Computation Technologies (ICICT), Coimbatore, India,
2020, pp. 381-385, doi:
10.1109/ICICT48043.2020.9112424.

[6] P. A. Chitale, K. Y. Kekre, H. R. Shenai, R. Karani and J. P.
Gala, "Pothole Detection and Dimension Estimation System
using Deep Learning (YOLO) and Image Processing," 2020
35th International Conference on Image and Vision
Computing New Zealand (IVCNZ), Wellington, 2020, pp.
1-6, doi: 10.1109/IVCNZ51579.2020.9290547.

[7] P. Ping, X. Yang and Z. Gao, "A Deep Learning Approach
for Street Pothole Detection," 2020 IEEE Sixth International
Conference on Big Data Computing Service and
Applications (BigDataService), Oxford, United Kingdom,
2020, pp. 198-204, doi:
10.1109/BigDataService49289.2020.00039.

[8] E. N. Ukhwah, E. M. Yuniarno and Y. K. Suprapto, "Asphalt
Pavement Pothole Detection using Deep learning method
based on YOLO Neural Network," 2019 International
Seminar on Intelligent Technology and Its Applications
(ISITIA), Surabaya, Indonesia, 2019, pp. 35-40, doi:
10.1109/ISITIA.2019.8937176.

[9] J. Redmon and A. Farhadi, “YOLO9000: Better, faster,
stronger,” 2016, arXiv:1612.08242.

[10] Redmon, Joseph, and Ali Farhadi. "YOLOv3: An
incremental improvement." arXiv:1804.02767 (2018).

[11] Alexey Bochkovskiy et al.” YOLOv4: Optimal speed and
accuracy of object detection,” 2020, arXiv:2004.10934

[12] The Cost of Car Damages from Potholes. Pothole Info.
https://www.pothole.info/2018/04/the-cost-of-car-damages-
from-potholes/

[13] Redmon, Joseph, et al. "You only look once: Unified, real-
time object detection." Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and
semantic segmentation,” in Proc. CVPR, 2014, pp. 580–587.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. CVPR, 2018, pp. 770–778.

[16] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object
detection,” in Proc. CVPR, vol. 1, no. 2, 2017, p. 4.

[17] T.-Y. Lin et al., “Microsoft COCO: Common objects in
context,” in Proc. ECCV, 2014, pp. 740–755.

[18] Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu,
Rongguang Ye, Qinghua Hu and Wangmeng Zuo,
“Enhancing Geometric Factors in Model Learning and
Inference for Object Detection and Instance Segmentation,”
2020, preprint arXiv:2005.03572, arXiv.

[19] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang
Ye and Dongwei Ren, “Distance-IoU Loss: Faster and Better
Learning for Bounding Box Regression,” 2019, preprint
arXiv:1911.08287, arXiv.

[20] Adrian Rosebrock. (2016, November). Intersection over
Union (IoU) for object detection. Pyimagesearch.
https://www.pyimagesearch.com/2016/11/07/intersection-
over-union-iou-for-object-detection/

[21] seekFire. (2020, July). Overview of model structure about
YOLOv5. Git Hub.
https://github.com/ultralytics/yolov5/issues/280

[22] Chien-Yao Wang et al. “CSPNet: A New Backbone that can
Enhance Learning Capability of CNN”, 2019,
arXiv:1911.11929v1

[23] Gao Huang et al. “Densely Connected Convolutional
Networks”, 2018, arXiv:1608.06993v5

[24] Tsung-Yi Lin et al. “Focal Loss for Dense Object
Detection”, 2018, arXiv:1708.02002v2

[25] Mingxing Tan et al. “EfficientDet: Scalable and Efficient
Object Detection”, 2020, arXiv:1911.09070v7

[26] Shu Liu et al. “Path Aggregation Network for Instance
Segmentation”, 2018, arXiv:1803.01534v4

	1. Introduction
	2. Related work
	3. Proposed solution
	3.1. Dataset
	3.2. Data preprocessing
	3.3. Model architectures
	3.4. Evaluation Metrics

	4. Experimental results
	5. Conclusion
	References

